
### **Supplementary Information**

### **Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19**

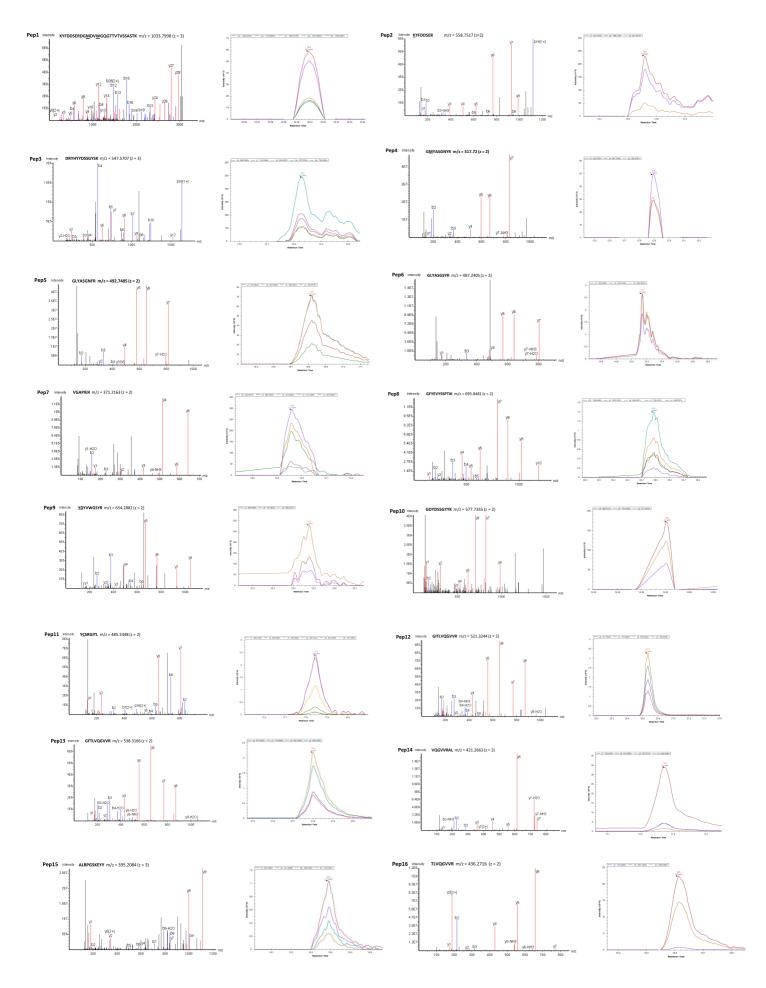
Wheatley et al

# Supplementary Table 1. Demographic and clinical characteristics of the uninfected and convalescent COVID-19 cohorts.

|                                | Full Cohort<br>(n=64) | Uninfected                   | Cellular                  | Uninfected                         |
|--------------------------------|-----------------------|------------------------------|---------------------------|------------------------------------|
|                                |                       | Serological<br>Cohort (n=32) | Analysis Cohort<br>(n=31) | Cellular Analysis<br>Cohort (n=20) |
| Age, median (IQR)              | 55 (49, 62)           | 53 (28, 60)                  | 52 (31, 56)               | 51.5 (26, 58)                      |
| Gender, % female (n)           | 43.8% (28)            | 53.1% (17)                   | 45.2% (14)                | 45% (9)                            |
| Disease severity, % (n) - mild | 68.8% (44)            | -                            | 74.2% (23)                | -                                  |
| - moderate                     | 23.4% (15)            | -                            | 16.1% (5)                 | -                                  |
| - severe                       | 7.8% (5)              | -                            | 9.7% (3)                  | -                                  |
| Positive PCR test, % (n)       | 84.4% (54)            | -                            | 83.9% (26)                | -                                  |

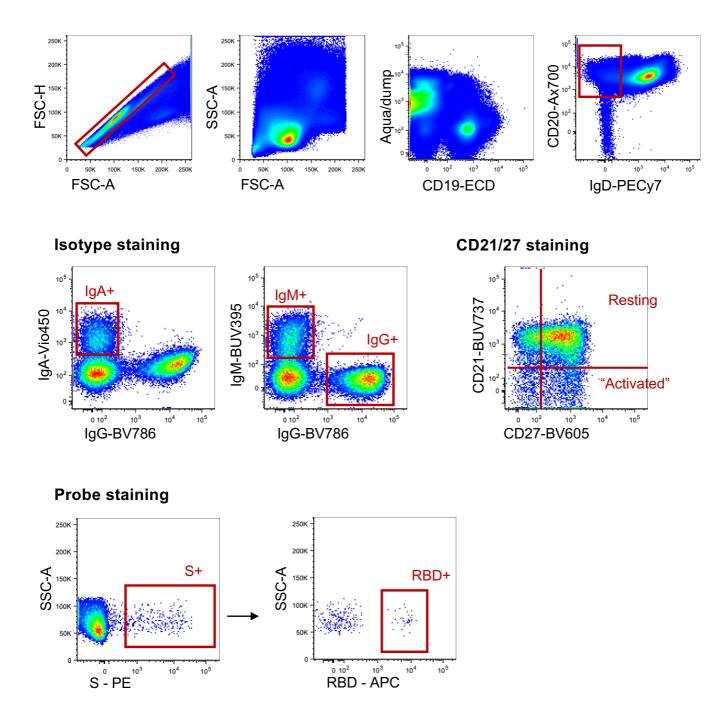


Supplementary figure 1: Fitting of the decline in antibody binding across different immunoglobulin isotypes.


### Supplementary figure 1: Fitting of the decline in antibody binding across different immunoglobulin isotypes.

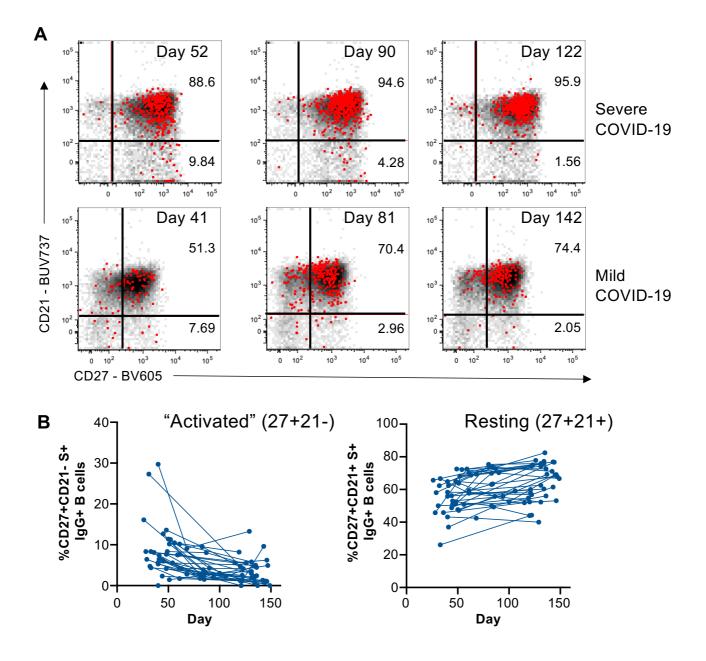
The best-fit model and half-lives are shown for the fitting of the decay of antibody binding to different SARS-CoV-2 antigens (n=64 participants). Two-phase decay is indicated by red (before day 70) and blue (after day 70) shaded areas. No shading indicates where single-phase decay provided the best fit. Uninfected control participants (n=32) are shown on the left side of each graph and horizontal dashed lines indicate the 90<sup>th</sup> percentile value of the uninfected control cohort. Note that for IgG2 to all antigens, IgM, IgA1 and IgA2 to N, IgM to RBD, and IgA2 to S, the SARS-CoV-2 infected cohort has a sizeable proportion (>25%) of responses at the first time point that are below the 90<sup>th</sup> percentile of the 32 uninfected controls and we have not calculated decay half-lives for these responses. Source data are provided as a Source Data file.

#### Correlation with neutralisation 1.00××× 0.88\*\*\* Neutralisation 1.00\*\*\* ACE2 binding inhibition 0.81\*\*\* 0.73\*\*\* 0.79\*\*\* 0.47\*\*\* 0.52\*\*\* Anti-S laG 0.55\*\*\* 0.71\*\*\* 0.84\*\*\* 0.81\*\*\* Anti-S1 laG Anti-S2 IgG 0.58\*\*\* 0.60\*\*\* 0.59\*\*\* Anti-RBD IgG 0.70\*\*\* 0.78\*\*\* 0.76\*\*\* 0.71\*\*\* Anti-N IgG 0.47\*\*\* 0.47\*\* 0.42\*\* Anti-S IgG1 0.39\*\* 0.47\*\* Anti-S1 IgG1 0.69\*\*\* 0.83\*\*\* 0.78\*\*\* Anti-S2 IgG1 0.51\*\*\* 0.53\*\*\* 0.52\*\*\* Anti-RBD IgG1 0.64\*\*\* 0.76\*\*\* 0.71\*\*\* 0.68\*\*\* Anti-N IgG1 0.41\*\* 0.43\*\* Anti-S IgG2 -0.060.14 -0.11Anti-S1 IgG2 0.23 0.40\*\* 0.29 Anti-S2 IgG2 0.08 0.17 0.16 0.47\*\*\* Anti-RBD IaG2 0.25 0.39\* Anti-N IgG2 0.07 0.57\*\*\* 0.27 0.46\*\*\* 0.52\*\*\* 0.55\*\*\* Anti-S IgG3 0.59\*\*\* 0.65\*\*\* Anti-S1 laG3 0.68\*\*\* 1.0 0.47\*\* 0.44\*\*\* 0.41\*\* Anti-S2 IaG3 0.5 0.57\*\*\* Anti-RBD IgG3 0.60\*\*\* 0.55\*\*\* 0.0 Anti-N IgG3 0.43\*\* 0.61\*\*\* 0.50\*\* Anti-S IgG4 0.17 0.38\* 0.20 -0.5 Anti-S1 IgG4 0.20 0.29 0.04 -1.0 Anti-S2 IgG4 0.18 0.20 0.03 Anti-RBD IgG4 0.01 -0.140.03 Anti-N IgG4 0.08 0.63\*\*\* 0.10 Anti-S IgM 0.45\*\*\* 0.51\*\*\* 0.52\*\*\* 0.61\*\*\* 0.68\*\*\* 0.69\*\*\* Anti-S1 IgM Anti-S2 IgM 0.18 0.05 0.28 0.47\*\*\* Anti-RBD IgM 0.56\*\*\* 0.64\*\*\* Anti-N IgM -0.04-0.14-0.03Anti-S IgA1 $0.29^{x}$ 0.18 0.09 Anti-S1 IaA1 0.36\*\* 0.44\*\* 0.25 Anti-S2 IgA1 0.35\*\* 0.25 0.27 Anti-RBD IaA1 0.39\*\* 0.22 0.30\* Anti-N IgA1 0.31\* 0.07 0.31 Anti-S IgA2 0.32\* 0.32\* 0.14 Anti-S1 IgA2 0.40\*\* 0.57\*\*\* 0.33\* Anti-S2 IgA2 0.45\*\*\* 0.44\*\* 0.37\* 0.51\*\*\* Anti-RBD IgA2 0.40\*\* 0.29 0.39\*\* Anti-N IgA2 0.30\* 0.37\* Early Late Early level vs. late neutralisation


### Supplementary figure 2: Correlation of antibody binding and ACE2 inhibition with neutralisation.

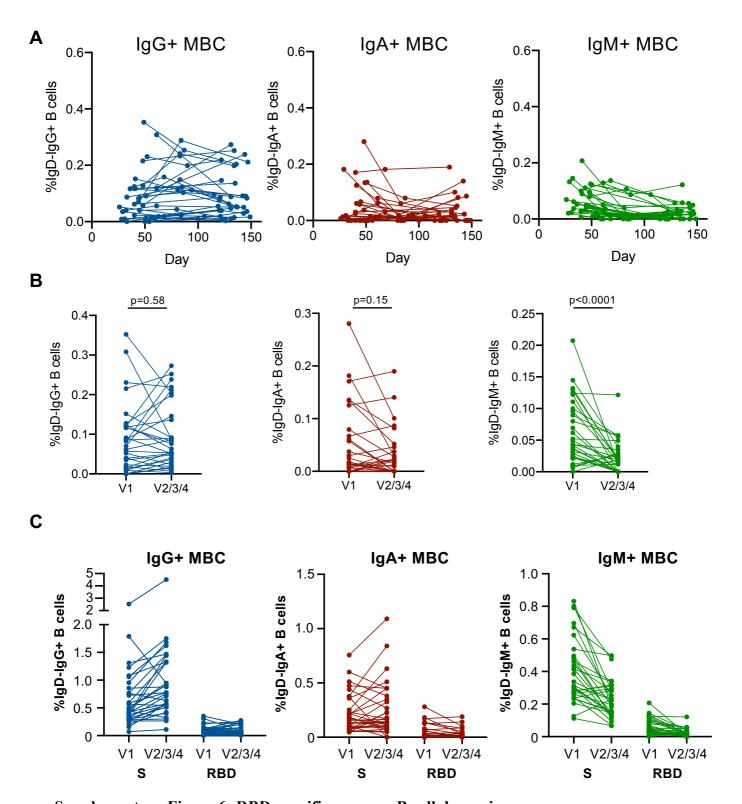
A heat-map of Spearman correlations between neutralisation titre and the serological measurements of antibody binding (by isotype and antigen). Correlations were assessed in early ( $\leq$ 50 days, left column n=54 participants) and late ( $\geq$ 100 days, right middle column, n=47 participants) convalescence in all participants were data was available. The association between early antibody binding and late neutralisation is also shown (right column, n=47 participants). All correlations are Spearman correlations. \*P = 0.01-0.05, \*\*P = 0.001-0.01, \*\*\*P $\leq$ 0.001.




Supplementary Figure 3: Representative annotated MS/MS spectra (left panel) and their corresponding extracted ion chromatograms (XICs; right panel).

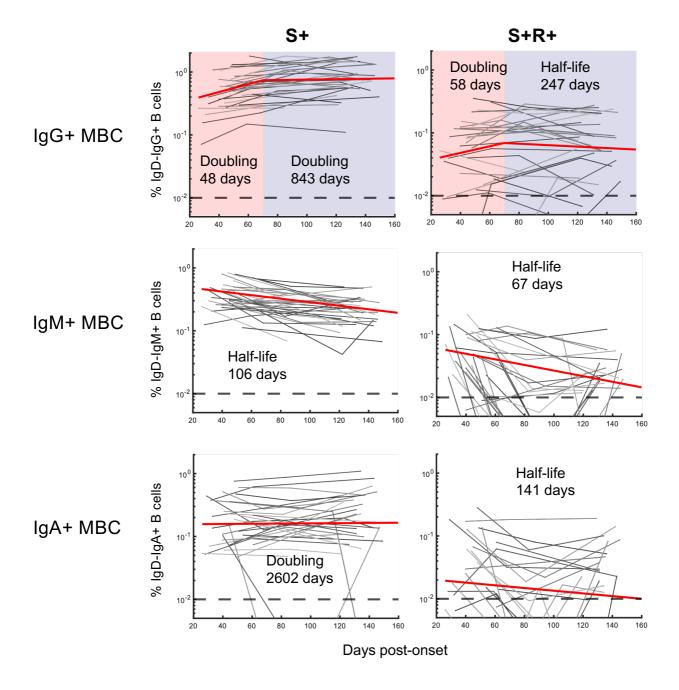
Supplementary Figure 3: Representative annotated MS/MS spectra (left panel) and their corresponding extracted ion chromatograms (XICs; right panel). The peptides used in PRM analyses are the matched clonotypic CDR-H3 peptides (pep1-16). Underlined amino acid indicates a post translational modification: M (oxidised methionine), W (oxidised tryptophan), K (carbamidomethylated lysine), D (carbamidomethylated aspartate), C (carbamidomethylated cysteine), and Y (acetylated tyrosine). The sequences, m/z and z of each individual peptides are shown on the top of their annotated MS/MS spectra. Matched b ions are indicated in blue and y ions are in red. m=mass, z=charge. MS raw data are available upon request.




# Supplementary Figure 4: Gating strategy for resolving antigen-specific B cells and surface isotypes.

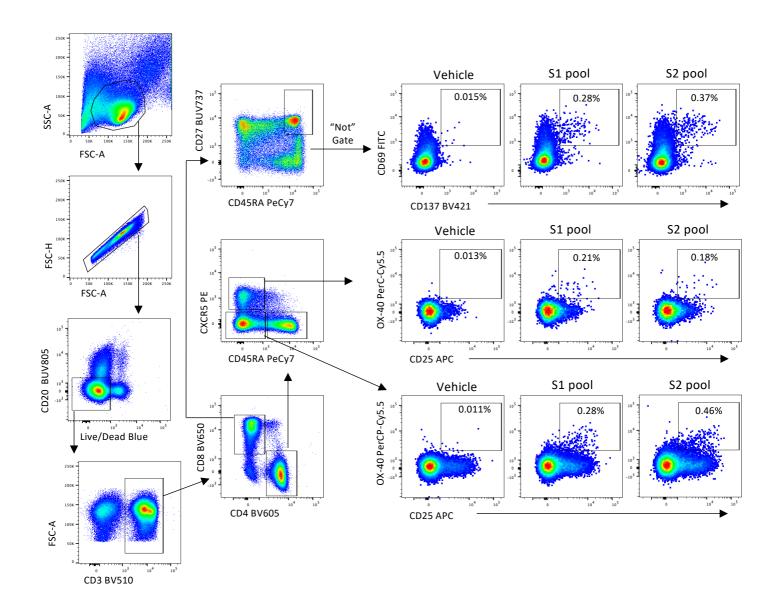
After doublet exclusion (FSC-A vs FSC-H) and lymphocyte gating (FSC-A vs SSC-A), live CD19+IgD-CD20+ B cells were gated based on surface immunoglobulin expression (IgM, IgG, IgA). Binding to SARS-CoV-2 spike (S) and/or SARS-CoV-2 RBD probes was assessed for each population. Memory B cell phenotypes were identified by CD21 and CD27 co-staining.



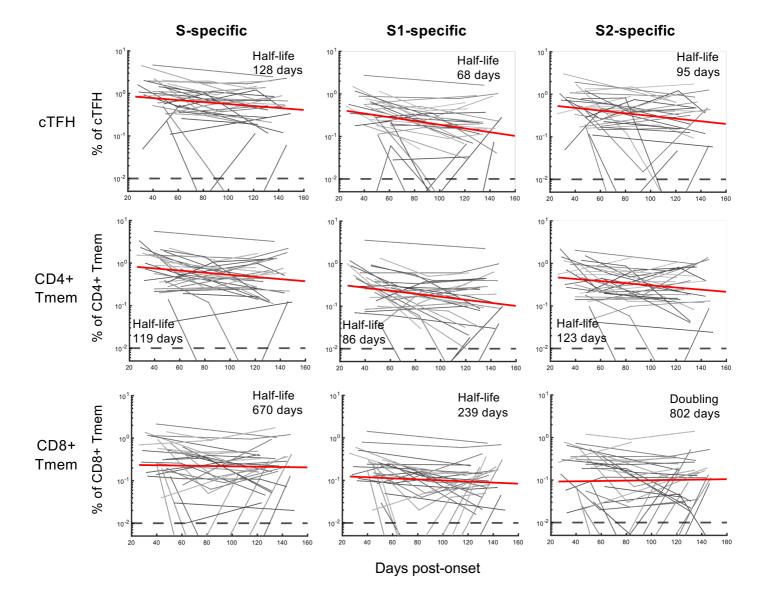

#### Supplementary Figure 5: Activation status of S-specific IgG+ memory B cells.

(A) Memory B cell phenotypes identified by CD21 and CD27 co-staining of S+CD19+CD20+IgD-IgG+ B cells (red) overlaid onto parental CD19+CD20+IgD-IgG+ B cells (black) and (B) the corresponding frequencies of "activated" (CD27+CD21-) or resting (CD27+CD21+) in in PBMC samples were assessed longitudinally (n=31 participants). Source data are provided as a Source Data file.



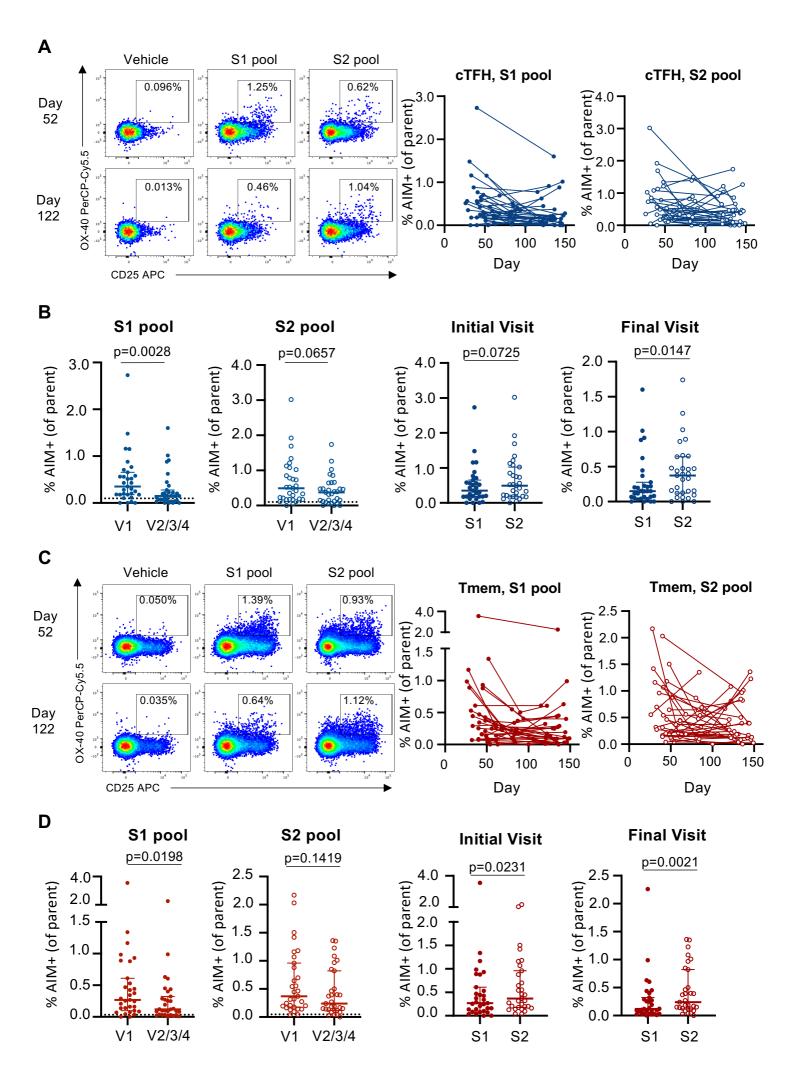

Supplementary Figure 6: RBD-specific memory B cell dynamics.

(A) Frequencies of RBD-specific IgG+, IgA+ or IgM+ memory B cells as a proportion of CD19+CD20+IgD-B cells in PBMC samples were assessed longitudinally. (B) Comparison of RBD-specific IgG+, IgA+ or IgM+ memory B cell frequencies at the earliest and latest timepoint available for each individual (n=31). Statistics assessed by two-tailed Wilcoxon test. (C) Direct comparison of S- and RBD-specific memory B cell frequencies at the earliest and latest timepoint available for each individual (n=31). Source data are provided as a Source Data file.




# Supplementary Figure 7: Fitting of the kinetics of S- and RBD-specific memory B cell responses over time.

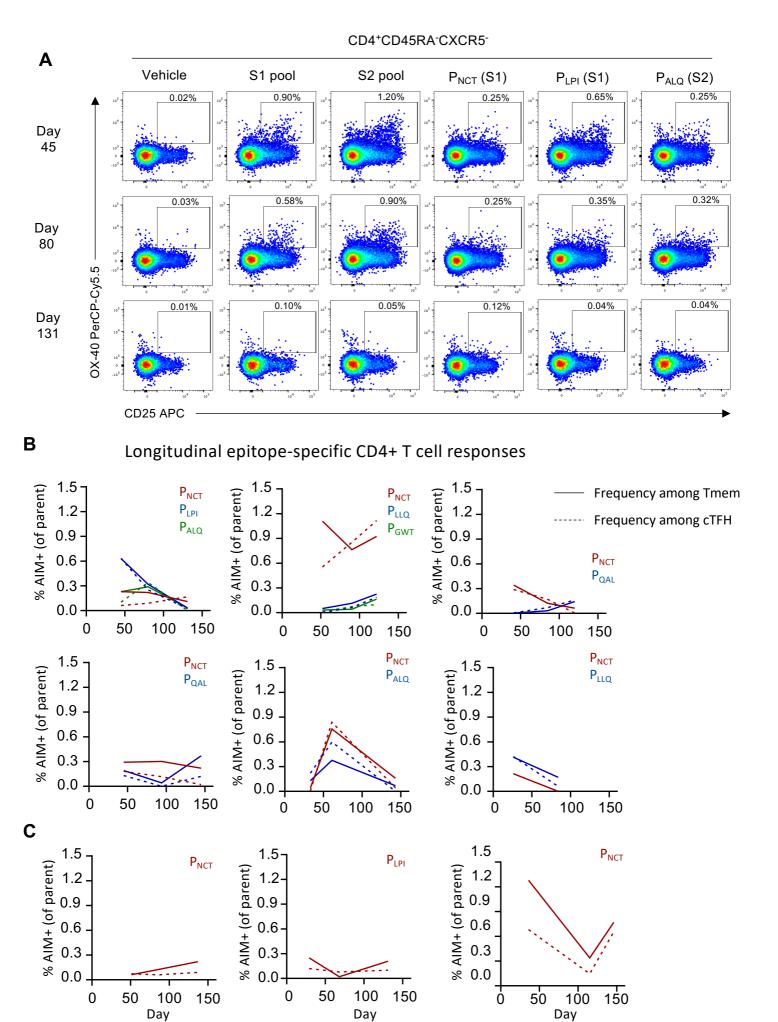
The best-fit half-lives are shown for the fitting of the growth and/or decay of S- or RBD-specific memory B cells (n=31 participants). Two-phase decay is indicated by red (before day 70) and blue (after day 70) shaded areas. No shading indicates where a single-phase decay model was used to fit the data. Dashed line indicates the lower limit of detection. Source data are provided as a Source Data file.




Supplementary Figure 8: Gating strategy for quantifying antigen-specific T cells. Lymphocytes were identified by FSC/SSC, followed by doublet exclusion (FSC-A vs FSC-H), and exclusion of dead or CD20+ cells. After gating on CD3, single positive CD4 or CD8 T cell subsets were identified. CD8 Tmem were gated as non-naïve (CD27+CD45RA+) cells, and assessed for co-expression of CD69 and CD137 following stimulation. CD4 T cells were gated as cTFH (CXCR5+CD45RA-) or Tmem (CXCR5-CD45RA-), and assessed for co-expression of OX-40 and CD25 following stimulation.



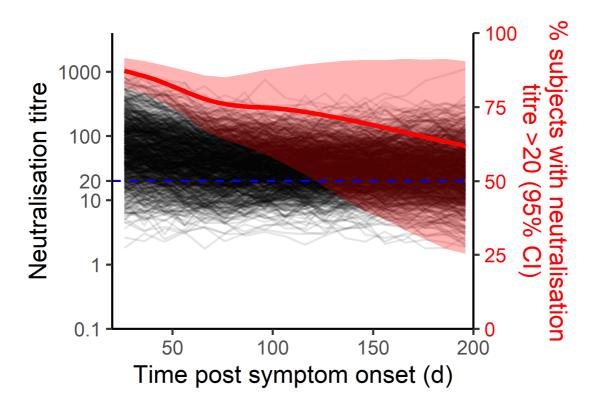
#### Supplementary Figure 9: Fitting of the decline in SARS-CoV-2-specific T cells over time.


The best-fit half-lives are shown for the fitting of the decay of cTFH, CD4+ Tmem and CD8+ Tmem specific to total S (S1+S2 responses combined), S1 or S2 peptide pools (n=31 participants). In all cases decay was fit with a single-phase decay model with the half-lives shown. Dashed line indicates the lower limit of detection. Source data are provided as a Source Data file.



Supplementary Figure 10: S1 and S2-specific CD4+ T cell responses.

#### Supplementary Figure 10: S1 and S2-specific CD4+ T cell responses.


(A, C) Representative staining of AIM markers following S1 and S2 peptide pool stimulation among (A) cTFH (CD3+CD4+CD8-CD45RA-CXCR5+) or (C) CD4+ Tmem cells and longitudinal cohort analysis (n=31). (B, D) Comparison of S1 or S2-specific (B) cTFH or (D) CD4+ Tmem responses at the earliest and latest visit for each participant, as well as paired frequency of S1 versus S2 responses at the initial or final visit (n=31). All graphs display background-subtracted values. Dashed line indicates median antigen-specific response of n=20 uninfected controls. Statistics assessed by two-tailed Wilcoxon test. Data are shown as median with interquartile range. Source data are provided as a Source Data file.



Supplementary Figure 11: Epitope-specific CD4+ T cell responses.

#### Supplementary Figure 11: Epitope-specific CD4+ T cell responses.

(A) Representative staining of AIM markers following S1 or S2 peptide pool or individual peptide stimulation among the CD4+ Tmem population. (B,C) Longitudinal peptide-specific frequencies in individual participants (n=9; solid line, CD4+ Tmem; dashed line, cTFH) for whom (B) multiple or (C) single epitopes were identified. All graphs show background subtracted data. Source data are provided as a Source Data file.



Supplementary Figure 12: Decay of neutralising antibody response to a titre of 1:20. Simulation of elicitation and decay of serological neutralisation activity in 1000 individuals based on distributions observed in our SARS-CoV-2 convalescent cohort. The simulation was repeated 1000 times to estimate the proportion of individuals maintaining a neutralisation titre above 1:20 across multiple simulations (median and 95% confidence intervals shown in red)